1.       CUBOID
Let length = l, breadth = b and height = h units. Then
i.      Volume = (l x b x h) cubic units.
ii.      Surface area = 2(lb + bh + lh) sq. units.
iii.      Diagonal = √(l2 + b2 + h2 )units.            (Square root of (l2 + b2 + h2 ))

2.       CUBE
Let each edge of a cube be of length a. Then,
i.      Volume = a3 cubic units.
ii.      Surface area = 6a2 sq. units.
iii.      Diagonal = 3a units.

3.       CYLINDER
Let radius of base = r and Height (or length) = h. Then,
i.      Volume = (Ï€r2h) cubic units.
ii.      Curved surface area = (2Ï€rh) sq. units.
iii.      Total surface area = 2Ï€r(h + r) sq. units.

4.       CONE
Let radius of base = r and Height = h. Then,
i.      Slant height, l = √(h2 + r2 )units.     (Square root of (h2 + r2 ))
ii.      Volume =(1/3)( Ï€r2h) cubic units.
iii.      Curved surface area = (Ï€rl) sq. units.
iv.      Total surface area = (Ï€rl + Ï€r2) sq. units.

5.       SPHERE
Let the radius of the sphere be r. Then,
i.      Volume = (4Ï€r3 )/3 cubic units.
ii.      Surface area = (4Ï€r2) sq. units.

6.       HEMISPHERE
Let the radius of a hemisphere be r. Then,
i.      Volume =  (2/3) Ï€r3cubic units.
ii.      Curved surface area = (2Ï€r2) sq. units.
iii.      Total surface area = (3Ï€r2) sq. units.
Note: 1 litre = 1000 cm3.

Quantitative Aptitude Quizzes and Study Material